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RADIATION OF INTERNAL WAVES DURING VERTICAL MOTION 

OF A BODY THROUGH A NONUNIFORM LIQUID 

V. A. Gorodtsov UDC 532.58 

Energy losses to radiation of internal waves during the vertical motion of a 
point dipole in two-dimensional and three-dimensional cases are computed. 

During the motion of bodies in a liquid with nonuniform density in the field of gravity, 
in addition to sound waves, internal gravitational waves are also excited in the liquid, 
and the body due to the loss of wave momentum experiences an additional wave resistance. 
A simpler problem concerning the motion of singular sources, in some sense approximately 
equivalent to the bodies, is often examined within the framework of the linear description 
of the wave field [1-4]. Such substitutions are well known and have a precise meaning in 
the theory of a uniform ideal liquid. It is assumed that they can also be used in the case 
of a weakly nonuniform liquid. In what follows, within the framework of a similar approach, 
we compute the total energy losses due to the formation of waves during vertical motion of 
bodies with subsonic speeds. 

Neglecting dissipation processes in the liquid, its motion as excited by a source with 
mass pm can be described with the help of the equations describing the balance of forces 
and mass and the condition of adiabaticity. If in the absence of the source, the liquid 
is stationary and the pressure po(z) and density po(z) depend only on the vertical coordi- 
nate z,then for small perturbations the basic equations can be written in the following 

linearized form [5, 6]: 

PoDv + VP = 0g, DO + Po wH-i + P ovv = Pore, 

Dp + po~g : cg (Dp + powH-~), H -~ = d In Po 
- d---;-- ' ( 1 )  

where ~ denotes the operator for differentiation with respect to time. 

From this system of equations, it is easy to obtain separate equations for perturba- 
tions of pressure, density, and velocity. The pressure equation in the case of a liquid 
with constant coefficients H and N 2 E gH -I -- gac~= can be put into the form 
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Here, and in what follows, a vector with index h denotes a vector with a zero vertical com- 

ponent (a horizontal vector). 

The formula for the pressure can be rewritten in integral form with the help of the 
retarded Green's function Gret(r, t). In this case, it is convenient to use a Fourier expan- 

sion in terms of plane waves E ~ exp(ikr -- imt): 

mO = 1 ~ dnkd~t (k, ~) E, 
( 2a)n+l J (3) 

po : :  i ~ dnkd~ ~ (N z __ ~2) Gret (k, ~) ~ (k, ~) E, 
(2z)'+~ 2 

where n is the dimensionality of the space, equal in what follows to two or three in the 
planar and three-dimensional cases, while dnk is the volume element of the space of wave 

vectors k. 

If a mass source of constant intensity moves uniformly and with rectilinear motion, 
then tnO=~pof(r--vot), ~t(k, ~)::2~p0f(k)~(~--kv0), and in the approximation of an ideal liquid, 
all energy losses by the source are due to the radiation of waves.* Formally, this expres- 
ses the equation for conservation of energy in integral form, which follows from the system 
of equation (i): 

dopv = ~ dnrpm --~ W, 

according to which the flow of wave energy through a closed surface equals the energy losses 
by the source per unit time. In what follows, the energy transmitted to the waves will be 
estimated according to a more easily computed loss quantity W. Substituting expansion (3) 
into the expression for W, after simple transformations for the case of uniform rectilinear 
motion of the source, we obtain the following general formula: 

; W ::  (2n)------ a-  dnkd~o co (N 2 -- o 2) G r~t (k, r If (k)l 2 6 (o ~ kv0). 

For the Fourier transform of the retarded Green's function, determined as a solution 
to the equation 

s ~t (r, t) = 6 (r) 6(0, G ~t (r, t)[t<o = 0, 

we have the formula 

, 1 ( ~  + ie )z  - N2k~ G ~t (k, o~) : -- (co + it) ~ -r- k z + - - ~  

in which the addition of an imaginary infinitely small term i~ to the frequency corresponds 
to the property of causality in the Green's function. An important property of the latter 
expression is its evenness with respect to the components of the wave vector. Keeping this 
in mind, it is easy to show that only that part of the function Gret(k, ~) that is uneven 
with respect to frequency gives a nonzero contribution to W, i.e. ,Im Gret(k, ~), and~ in 

this manner, the general formula for W can be re~r in the follo~ing form. 

W . -  ~t~ ~ d"kd~.o~o(NZ--~o2) lf(k)]Z6(~--kvo) Imoret(k , o~). (4) 
(2~) '~ .) 

The expression forlm Gret(k, ~) is found from Gret(k, ~) with the help of a well-kno~m 
formula from the theory of generalized functions (x+ie) -I = Px -I -- i~6(x) and we have the 
form 

*The source can experience retardation due to these losses and then, the indicated assump- 
tion concerning the uniformity of motion can be satisfied only approximately depending on 
the relative smallness of the losses. On the other hand, the losses can be compensated by 
the work of external forces. 
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In the three-dimensional case, we consider an axisymmetric body, which is modeled as 
a one-dimensional distributed source with f(r) = ~(z)~(x)~(y) and moves in a vertical direc- 
tion along the axis of synnnetry (Vox = Vov = 0). Then, with the use of cylindrical coordi- 

- -  2 2 1 2  . �9 ~ .  nates kz,0, kh : (k~+ky) / , xntegratxon wxth respect to these variables is easily carried 
out (with respect to angle, due to the cylindrical symmetry of the problem and the function 
Im Gret(k,m),and with respect to kz, kh due to the product of two 6-functions in the inte- 
grand). For simplicity, we will limit ourselves to the analysis of the motion of a source 
with speeds that are less than the speed of sound. Then, there is no radiation of sound 
and all losses will be due to the radiation of internal waves. The magnitude of the losses 
W in any case for v~ < 2c~ in general turns out not to depend on the compressibility of the 
fluid: 

N/vo 

W= p~~176 ~ dkzkzlv(kz)[Z" (5) 
0 

As is well known [7], the motion of a sphere in the approximation of a uniform ideal 
liquid corresponds to the motion of a point dipole (doublet). For the doublet, ~ov(z) = 
--d3~(z)/3z, and in the case of the stratified liquid considered here, the formula for the 
energy losses due to radiation of internal waves follows from (5) 

#N4 (6) 
W :  16~V 3 . 

I n  t h e  c a s e  o f  a d i p o l e ,  c o n s i s t i n g  o f  a p o i n t  s o u r c e  and a s i n k  e q u a l  i n  i n t e n s i t y ,  
s e p a r a t e d  by  a f i n i t e  d i s t a n c e  ~o f rom one a n o t h e r ,  t h e  i n t e g r a t i o n  i n  (5) i s  a l s o  e a s i l y  
carried out" 

W= P'2~ 1-- 2 (~.sin~.+cosX--1)], ~.----- NXo 
4~vo ~2 j Vo 

In the limit ~o § ~o § ~o~o =d = const, formula (6) follows from here. 

The integration is also easily carried out for a smeared out source of the type ~(z)= 
l-lexp(--z21-2), where 9(kz) =/~exp(-k~2), 

W P2~176 [ l - - exp (  212NZ 
16/2 , . . - -  v----~--o ) ]"  

For large Froude numbers (vo/Nl >> i), the dependence on the smearing scale disappears and 
there is an inverse proportionality with the speed (Wm0.125~o=N2v~1), while for small 
Froude numbers 2W~O.125~vo1-2. From here, the nonuniformity in the limiting transition 
to the stationary point source is evident. If at first the limit Vo § is taken, then we 
obtain W=0, while if the limit l§ is taken, and then vo § we arrive at an infinitely 
large value. 

In the two-dimensional case, the flow around the cross section of a circular cylinder 
by a uniform ideal liquid corresponds to the flow around a flat doublet. In the subsonic 
regime for motion of a doublet in a nonuniform liquid, the expression for the energy losses 
(4) can be reduced to elliptic integrals. The final answer becomes expecially simple with 
the condition vo << co, NH: 

~N s (7) W ~ ~ .  

Simple formulas of type (6) and (7) c~n be obtained with a precision up to numerical 
factors using dimensional analysis. For rela~$vely slow motion of a point dipole (Vo ~ co), 
the determining parameters are the characteristics of the doublet d, Vo, and the character- 
istics of the medium N, H. Within the framework of the linearized description, the radia- 
ted energy must be proportional to the square of the source amplitude, i.e., d 2. Therefore, 
with the help of dimensional consideration~ 
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Here f n ( x )  i s  a u n i v e r s a l  d i m e n s i o n l e s s  f u n c t i o n  wh ich  i n  t h e  l i m i t  vo /NH+ 0 becomes a u n i -  
v e r s a l  c o n s t a n t  Ca, and t h e n  f o r m u l a s  o f  t y p e  (6) and (7) a r e  o b t a i n e d .  The f a c t  t h a t  t h e  
c o n s t a n t s  Cn t h e n  t u r n  ou t  to  be  f i n i t e  i s  n o t  t r i v i a l .  I n d e e d .  f o r  a p o i n t  s o u r c e  i n  t he  
t w o - d i m e n s i o n a l  c a s e ,  i n  t h e  l i m i t  Vo/~T~+ 0, t he  q u a n t i t y  W becomes i n f i n i t e l y  l a r g e .  I n  
the three-dimensional case, the losses for a doublet also become infinitely large, if the 
doublet moves horizontally. 

If we use the usual relations relating the dipole moment d to the radius of the body 
around which the flow occurs d 2 = (2~vor~) 2, then the formula for the losses of a vertically 
moving doublet take the form 

2 n = 2 ,  

~r~ N3 r~N 
--~-~--vo . n = 3,  

so t h a t  i n  t h e  t w o - d i m e n s i o n a l  c a s e  t h e  f u n c t i o n  o f  v e l o c i t y  d i s a p p e a r s ,  w h i l e  i n  t he  t h r e e -  
d i m e n s i o n a l  c a s e  i t  a p p e a r s  as  a d e c r e a s i n g  f u n c t i o n ,  

Now, f o r  Vo << Co, Nil, t h e  d e t e r m i n i n g  p a r a m e t e r s  f o r  a d o u b l e t  w i l l  be r o ,  Vo, and N, 
so t h a t  

W = v ~ _ ~  F ,  v, . 

I f  f o r  l a r g e  F roude  numbers v o / r o N  the  q u a n t i t i e s  Fn(=) become f i n i t e  n u m e r i c a l  c o e f f i c i e n t s ,  
then we arrive at the formula of the type obtained previously. However, now this assumption 
is less justified, although it has a clear physical meaning (in this limit W turns out to be 
proportional to the square of the volume of the body). Finally, it should be emphasized 
that the similarity between the problems of the motion of a body and that of a doublet is 
expected exactly in this limiting case of large Froude numbers. 

NOTATION 

po(Z), po(z), density and pressure of the ground state; z, vertical coordinate; v, p, 
p, perturbed velocity, pressure, and density; H ~ (d in po/dz) -I, characteristic length scale 
for stratification; N = (gH -~ -- g=c72) ~/=, Weisel--Brent frequency; g, acceleration of grav- 
ity; co, speed of sound; w, vertical component of the perturbed velocity; V, vector oper- 
ator; k, wave vector; m, frequency; da, vector surface element: W, magnitude of the energy 
losses; 6(t), ~(r) ~ ~(x) 6(y)~(z), Dirac functions; Vo, velocity of motion of the source of 
perturbations; d, dipole moment of the doublet; ~o, l, length dimension parameters; ~o, 
intensity of the source. 
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